Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Rev. cuba. estomatol ; 47(1): 14-36, ene.-mar. 2010.
Article in Spanish | LILACS, CUMED | ID: lil-584481

ABSTRACT

La osteointegración es la conexión estructural y funcional entre el hueso y un implante. Cuando un implante se inserta en el hueso, se crea la denominada interfase hueso-implante, una zona de unión entre la superficie del biomaterial del implante y el hueso circundante. La cicatrización de esta interfase depende de las condiciones biológicas del hueso, las características de diseño del implante y la distribución de cargas entre hueso e implante. En este artículo se hace una revisión del proceso de cicatrización de la interfase hueso-implante para el caso de un implante dental. El objetivo es describir la secuencia de eventos biológicos iniciados con la lesión causada por la inserción del implante y que concluyen con la formación de nuevo hueso en la interfase. Esta descripción incluye una novedosa clasificación de los fenómenos mecánicos que intervienen durante el proceso de cicatrización de los tejidos lesionados. Esta descripción mecanobiológica de la interfase hueso-implante dental se utiliza para determinar las características más relevantes a tener en cuenta en la formulación de un modelo matemático de la osteointegración de implantes dentales(AU)


The osteointegration is the structural and functional connection between bone and implant. When an implant is inserted in bone, it creates the so-called bone-implant interphase, a joint zone between implant biomaterial surface and the surrounding bone. The healing of this interphase depends on bone biological conditions, characteristic of implant design and the distribution of loads between bone and implant. The aim of present article is to review of healing process of bone-implant interphase for a dental implant and also to describe the sequence of biological events beginning with lesion caused by implant insertion and leading to the formation of a new bone in the interphase. This description includes a novel classification of mechanical phenomena present in the healing process of tissues affected. This mechanobiological description of dental bone-implant interphase is used to determine the more significant features to be into account in formulation of a mathematical model of the osteointegration of dental implants(AU)


Subject(s)
Humans , Wound Healing , Dental Implant-Abutment Design/methods , Bone-Implant Interface , Mechanical Phenomena
2.
Rev. cuba. invest. bioméd ; 29(1)ene.-mar. 2010.
Article in Spanish | LILACS | ID: lil-584723

ABSTRACT

La oseointegración de un implante dental está condicionada por el tipo de material del implante, su topografía superficial y el tipo de recubrimiento. Aunque son varios los materiales utilizados para la fabricación de implantes dentales, actualmente el titanio es el material de preferencia por a su comportamiento inerte al entrar en contacto con los tejidos biológicos. Como la topografía superficial influye en la adhesión y proliferación celular, los implantes dentales son sometidos a tratamientos que crean irregularidades superficiales en la escala micro y sub-micrométrica. Así mismo, recubrimientos basados en minerales de origen orgánico son utilizados para mejorar la deposición de hueso sobre el implante. El objetivo de este estudio es realizar el cultivo de células osteoblásticas sobre sustratos de Ti-6Al-4V con cuatro tipos de superficies típicamente usadas en implantes dentales para determinar cuál de ellas tiene mejor comportamiento en términos de adhesión celular, proliferación celular y biomineralización. Las células osteoblásticas fueron cultivadas durante 24 horas para el ensayo de adhesión y durante 1, 2, 5, 6 y 7 días para el ensayo de proliferación. La biomineralización fue evaluada caracterizando mediante stereo zoom y SEM los depósitos de mineral coloreados mediante la técnica de tinción con alizarina roja. La cuantificación de estos depósitos de mineralización se realizó utilizando una herramienta de procesamiento de imágenes. Los resultados obtenidos revelan que las superficies rugosas y con recubrimiento poseen mejor comportamiento. Ninguna de las superficies estudiadas tuvo carácter tóxico para las células y todas presentaron perfiles de adhesión celular, proliferación celular y biomineralización


The bone integration of dental implants is dependent of type of material of implant, its superficial topography and also by the type of coating. Although there are many the materials used for the manufacture of dental implants, currently the titanium is the choice material by its inert behavior when it contact with biological tissues. As the superficial topography influenced on cellular adhesion and proliferation, the dental implants underwent treatments creating superficial irregularities in the micro and sub-micrometric scale. Likewise, the coats based on organic-origin minerals are used to improve the bone deposition on implant. The aim of present paper is to carry out the osteoblasts cells culture on Ti-6AI-4V substrates using four different types surfaces typically used in dental implants to determine which of them have the better behavior in terms of cellular adhesion, cellular proliferation and biomineralization. The osteoblasts cells were cultivated during 24 hr for the adhesion assay and during 1, 2, 5, 6 and 7 days for the proliferation assay. The biomineralization was assessed by characterization with estereozoom and SEM of the mineral depots colored using dying technique with red alizarin. The quantization of these mineralization depots was performed using a tool of images processing. The results obtained showed that the rough surfaces and coated have a better behavior. None of the study surfaces had a toxic character for cells and all showed cellular adhesion profiles, cellular proliferation and biomineralization

3.
Rev. cuba. invest. bioméd ; 29(1)ene.-mar. 2010.
Article in Spanish | LILACS | ID: lil-584725

ABSTRACT

El cartílago articular es un complejo tejido biológico que recubre los extremos de las articulaciones diartrodiales y proporciona resistencia a la compresión y excelentes propiedades de fricción durante el movimiento articular. La presencia de cargas mecánicas influye en el comportamiento y condición fisiológica del cartílago. Es así como, mediante el mecanismo de mecanotrasducción, los condrocitos perciben la magnitud de la carga y a partir de éste estímulo mecánico expresan genes como el Sox9 o el Runx2, los cuales generan cambios bioquímicos en las células y por tanto en el cartílago mismo. Diferentes trabajos experimentales se reportan acerca del efecto de las cargas impuestas al cartílago relacionadas con la expresión morfogénica del condrocito, sin embargo, no se cuenta con un modelo matemático y/o computacional que pueda explicar el comportamiento antagónico del Sox9 y el Runx2. El objetivo de este trabajo es introducir un modelo matemático que permita predecir el comportamiento mecano-biológico del cartílago articular a partir de las cargas mecánicas cíclicas, la presión hidrostática y la expresión génica y/o de proteínas que facilitan el proceso de síntesis o destrucción del tejido. El modelo se implementó numéricamente con el uso del método de los elementos finitos y los resultados obtenidos permitieron predecir diversos comportamientos mecano-biológicos del cartílago articular


Articular cartilage is a biological tissue complex coating the extremes of diarthric joints and provides resistance to compression and excellent friction properties during the articular movement. Presence of mechanical stress influenced on the behavior and physiologic condition of cartilage. That is how by means of the mechanotransduction, the chondrocytes may to perceive the stress magnitude and from this mechanical stimulus, they express gens like the Sox9 or the Runx2, which generate biochemical changes in cells and thus in the cartilage. Different experimental papers reporting on the effect of the stress imposed on the cartilage related to chondrocytes morphogenetic expression, however, there are not a mathematical model and/or computation to explain the antagonist behavior of Sox9 and the Runx2. The aim of present paper is to introduce a mathematical model allows predicting the mechano-biological behavior of articular cartilage from the cyclic mechanic stress, the hydrostatic pressure and the genic expression and or proteins providing the tissue synthesis or destruction. Model was numerically implemented using the finite elements method and the results obtained allowed to predict different mechano-biological behaviors of articular cartilage

SELECTION OF CITATIONS
SEARCH DETAIL